APPENDIX B: SIGNAL FIELD STRENGTH COMPUTATIONS

Field strength is measured in $dB\mu V/m$ as seen by the receiving antenna. This is calculated from the peak-power value and the antenna-correction factor using the following equations:

$$G_{dB_i} = -29.79 + 20\log_{10}(f_{MHz}) - ACF,$$
 (B1)

where G_{B_i} is the gain of the antenna in dBi, f_{mHz} is the frequency in MHz, and ACF is the antenna correction factor in dB;

$$A = \frac{\lambda^2 + 10^{\frac{G_{m_i}}{10}}}{4\pi},$$
 (B2)

where A is the aperture of the antenna in units of m^2 and λ is the wavelength of the carrier frequency in meters;

$$\lambda - \frac{c}{f_{\text{Hz}}},$$
 (B3)

where c is the speed of light in m/s (3e8 m/s), and f_{Hz} is the carrier frequency in Hz;

$$P_d = \frac{P_{m(watts)}}{A}, \tag{B4}$$

where P_d is the power density in watts/m², and $P_{m(watts)}$ is the power in watts measured at the output of the antenna; and

$$E_{dB}(\frac{\mu\nu}{m}) = 20 * \log_{10} (1e6 * \sqrt{P_d * 377}),$$
 (B5)

where $E_{aB}(\frac{\mu\nu}{m})$ is the E field in dB μ V/m measured at the antenna, and 377 is the impedance of free space measured in ohms.